

 This document explains how to implement DIOC devices into a TwinCAT 2 project.

Manual TP10/RC/DIOC

 Page 2 of 30

1. Contents

1. Contents __ 2

2. Introduction ___ 3

3. Short guide to implementing DIOC into TwinCAT 2 _______________ 3

4. Detailed manual to implementing DIOC into TwinCAT 2 ___________ 4

Step 1: Use E-bus digital input and output terminals ____________________________________ 4

Step 2: implementation of library ‘TcFixsusDiocLib’ ____________________________________ 4

Step 3: Change the cycle time __ 6

Method 1: Change the standard cycle time ___ 6

Method 2: create a new task with a 12 ms cycle time ________________________________ 8

Step 4: Implementation of the visualisation __ 12

TP10 visualisation __ 12

Step 5: Changing the configurations on the system manager ____________________________ 15

I/O at task begin ___ 15

Calling I/O in the right task ___ 15

Assigning the in- and outputs of the TP10 and RC ___________________________________ 16

Sync unit assignment __ 17

5. Inputs and outputs of the TP10 block_________________________ 18

Description usage of the inputs and outputs of the TP10 _______________________________ 18

Inputs: ___ 19

Outputs: __ 22

Systeminfo: ___ 23

Sample program listing TP10 __ 24

6. Inputs and outputs of the RC block __________________________ 25

Description usage of the inputs and outputs of the RC _________________________________ 25

Inputs: ___ 26

Outputs: __ 29

Systeminfo: ___ 30

 Page 3 of 30

2. Introduction
This manual is provided to help people implement the TP10 and RC into their own

TwinCAT 2 projects. If required, you can visit our site, www.upzio.com.

3. Short guide to implementing DIOC into

TwinCAT 2
• Step 1: Use E-bus digital input and output terminals

Step 2: Download the DIOC library ‘DIOC_Library’ and add it to the project.

The latest version of the library can be found on the website,

https://www.upzio.com

• Step 3: Change the cycle time to 12 ms

o Method 1: change the standard cycle time to 12 ms and call the instances

in MAIN

o Method 2: make a new task with a cycle time of 12 ms and call the

instances in the new task

• Step 4: Implement the new visualizations, if required

o Implement the ‘TP10’ or ‘TP10 mini’ visualization for each TP10.

• Step 5: Change the system manager settings

o Check if the in- and outputs of the DIOC devices are being called in the

correct task

o Enable the ‘I/O at task begin for the linked PLC program

http://www.upzio.com/
https://www.upzio.com/

 Page 4 of 30

4. Detailed manual to implementing DIOC

into TwinCAT 2
Step 1: Use E-bus digital input and output terminals

To implement the DIOC protocol, the E-bus must be used. To do this, E-bus digital input

and output terminals must be used (e.g. EL1809, EL2809 or EL1859).

The DIOC protocol can not be used on the K-bus. If the amount of inputs/outputs of the

K-bus is too large, the I/O cycle time will get an offset causing the DIOC protocol to not

function properly. Therefore, the K-bus is not officially supported.

Step 2: implementation of library ‘TcFixsusDiocLib’

The first step of the implementation is to load the necessary libraries. To do this you will

have to download the library from our website. (see https://www.upzio.com/downloads)

The library file ‘TcFixsusDioc.lib’ must be moved to your library directory (usually

C:\TwinCAT\Plc\Lib). When the library is in your standard library directory, the library

still must be implemented in your program. This can be done by opening the library

manager. This can be found under ‘Resources’.

In the library manager a list can be found which contains all libraries and their content.

The DIOC library can be added by right clicking the list of libraries and selecting

‘additional library’. Navigate to the location of the library and open the library by

selecting it and opening it. The library should be loaded now.

https://www.upzio.com/downloads

 Page 5 of 30

 Page 6 of 30

Step 3: Change the cycle time

To ensure a good communication with the TP10, RC and other DIOC devices, instances of

the TP10, RC and other DIOC function blocks must be called with a fixed cycle time. This

cycle time is currently 12 ms. There are two methods to do this:

1. The standard cycle time can be set to 12 ms, the DIOC instances should then be

called in the standard program (the MAIN program).

2. A new task can be made with a cycle time of 12 ms in which the DIOC instances

can be called.

Method 1: Change the standard cycle time
This is the least complicated method. However, when other components of the program

need to run on a different cycle time or when the whole program is too large to run on a

cycle time of 12 ms, the second method should be used.

The cycle time can be changed under Resources/Task configuration.

A list of all tasks will be displayed. Then the standard task can be changed to 12 ms:

The next step is to navigate to the MAIN program (or the equivalent if the MAIN

program has been renamed) by clicking on POU and MAIN.

Now the DIOC instances must be called in the MAIN program. Make sure the instance is

called every cycle to ensure a good communication.

 Page 7 of 30

 Page 8 of 30

Method 2: create a new task with a 12 ms cycle time
This method can only be used if there are less than 4 tasks in the project. If this is not

the case, the cycle time of one of the other tasks needs to be changed to 12 ms and the

DIOC program must be called in this task.

The first step is to make a new program that will be executed in the new task. Making a

new program can be done by right-clicking under POU and adding a new object. The new

program is named MAIN_12ms in the example.

In this new program DIOC instances must be called, this means they will be executed.

 Page 9 of 30

Now a new task will be created. This can be done by navigating to Resources/Task

configuration.

Right-click in the list of tasks and choose ‘insert Task’.

 Page 10 of 30

The task can be renamed by double clicking on the name of the new task. In this

example the name ‘DIOC’ will be used. The cycle time of the new task must be changed

to 12ms.

After the new task is made, the task needs to execute the new program. Right-click on

the new task and select ‘Append Program Call’.

 Page 11 of 30

Select the program that must be executed by the task. Use the program that was created

earlier which executes the Dioc program.

The priorities of the tasks should also be set in order. The task with the lowest cycle time

should always get the lowest priority number (lowest priority number means highest

priority).

 Page 12 of 30

Step 4: Implementation of the visualisation

The DIOC_Library contains two visualisations to use with the TP10 and two visualisations

to use with the RC. The visualisation ‘TP10’ or ‘TP10_MINI’ can be used for every TP10

separately and ‘RC’ or ‘RC_MINI’ can be used for every RC separately.

Below is a description on how to implement the TP10 visualisation. The RC can be

visualised in the same way.

TP10 visualisation
Every TP10 can get its own visualisation where the status of the buttons and the

measurements can be read. For a complete explanation of the possibilities, see chapter

‘Variables of the TP10’.

There are two possible visualisations that can be used. The ‘TP10’ visualisation shows the

whole TP10, while the ‘TP10_MINI’ is a small button with which the full visualisation can

be opened.

Both visualisations can be added in the same way. As an example, a ‘TP10’ visualisation

is added.

Open the visualisation screen in which the TP10 visualisation will be used. Add a

visualisation:

 Page 13 of 30

Select ‘TP10’ or ‘TP10_MINI’ and click on ‘OK’.

Double click on the new visualisation and configure the visualisation under ‘visualization’

with the configurations below:

• ‘Draw’ and ‘Clip’ should be off.

• ‘Fixed’ should be on

This configuration makes sure the size and ratios are correct.

To make sure the TP10 visualisation works as expected, the correct links must be

made. This can be done in the menu of the visualisation. Select ‘Placeholder’ in the

‘Visualization’ menu. In this menu the next configurations can be done:

• FB_TP10 : The location of the instance of the TP10 in the program.

• X_OFFSET and Y_OFFSET: only used in the TP10_MINI. With these

placeholders the TP10 can be moved relative to the button to open the TP10

visualisation.

 Page 14 of 30

 Page 15 of 30

Step 5: Changing the configurations on the system manager

When using the TwinCAT system manager there are two things that have to be checked

to implement the TP10, RC and other DIOC devices:

I/O at task begin
Under ‘PLC-Configuration/PLC program’ the option ‘I/0 at task begin’ needs to be checked

to ensure a good communication with the DIOC device.

Calling I/O in the right task
The in- and outputs of the PLC will be called in a certain cycle time. The in- and outputs

of the DIOC devices must be called in the same cycle time as the DIOC program. This

can be done by calling the in- and outputs in the same task as the DIOC program. When

the standard task has a 12 ms cycle time, this step can be ignored.

To call the in- and outputs in the right task, navigate to ‘PLC-configuration/ PLC program

/ standard task / inputs’ and select all DIOC inputs. Right-click on the selected inputs and

go to ‘move to’. Choose the task in which the DIOC instances are executed. In this

example this is ‘Main_12ms’.

 Page 16 of 30

Do the same for the outputs in ‘PLC-Configuration/PLC program/ standard task/ outputs’.

Assigning the in- and outputs of the TP10 and RC
Outputs of the TP10 and RC have the name shown below

(=instance.FB_DIOC_COMM.fbDioc.doOut):

 Page 17 of 30

Inputs of the TP10 have the name shown below:

(= instance.FB_DIOC_COMM.fbDioc.diIn)

Sync unit assignment
For bigger projects, it might be a good idea to assign sync units to your I/Os. Without

sync units the TP10’s and RC’s might not work if another I/O is missing or

malfunctioning. Typically, a different sync unit should be assigned to every EtherCAT

Coupler in your project. For more information on the sync units visit the Beckhoff

information site.

https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemmanager/ref

erence/ethercat/html/ethercat_syncunitassignment.htm&id=

https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemmanager/reference/ethercat/html/ethercat_syncunitassignment.htm&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcsystemmanager/reference/ethercat/html/ethercat_syncunitassignment.htm&id=

 Page 18 of 30

5. Inputs and outputs of the TP10 block

Description usage of the inputs and outputs of the TP10

The TP10 block has a lot of inputs that can change the behaviour of the TP10.

As an example below the RGB leds of the TP10 are set to red. To do this, predefined

colors can be used.

The other variables of the TP10 can also be addressed this way. The table below shows a

list of all the inputs, outputs and configuration variables the TP10 has.

Other colour constants available in the DIOC library are listed below in the description of

the input.

For a better understanding of a full implementation of a TP10, a very simple example is

implemented in the sample project.

 Page 19 of 30

Inputs:

Name Type Description

bRoomAnalyser BOOL This boolean must be true of the connected

device is a Room Analyser. If this boolean is

true, all buttons are disabled, except button

10. Button 10 still be used to make the

Room Analyser flash green. This can be

used to test the DIOC communication with

the PLC.

arr_bLeds ARRAY

[0..10] OF

BOOL

Every button of the TP10 has it’s own led.

These can be controlled by changing the

values in this array. True will make the led

go on, false will make the led go off.

arr_bLeds [1] = led 1, arr_bLeds [10] = led

10

iIntensityLeds INT Value between 0 and 100 that changes the

intensity of the buttonleds.

iHapticIntensity INT Intensity of the sound when pressing a

button (0..100)

iButtonSensitivity DWORD sensitivity of the buttons, only used if value

> 0, (values from 1-99 are possible, 99 is

the lowest sensitivity, 1 is the highest

sensitivity, standard value is 55)

arr_bMasks ARRAY

[0..10] OF

BOOL

Every button of the TP10 can be turned off,

this can be done by changing the values in

this array. False means the button is

enabled, true means the button is disabled.

Arr_bMasks [1] = button 1, arr_bMasks

[10] = button 10, bRoomAnalyser overrules

these.

Arr_sButtonComments ARRAY

[0..10] OF

STRING(8)

Every button of the TP10 has a short

description (maximum 8 characters) that

will be displayed on the visualisation.

Arr_sButtonComments [1] = comment

button 1, arr_sButtonComments [10] =

comment button 10

 Page 20 of 30

bReset BOOL When the TP10 has to be reset, this

20oolean should be set to true briefly. Once

bReset is false again, the reset time will

count to restart the TP10.

bResetVOC BOOL if this input is true, the VOC/eCO2 sensor

will be turned off for 1000 cycles

iIntervalCO INT Interval for the CO measurement in

seconds. This determines how fast the

measurements of the CO sensor must be

checked. This is standard 7 (seconds).

This variable must be changed before the

start of the program. This value will not be

sent to the TP10 once the TP10 program is

running. After a restart or reset, this value

will be sent again.

iIntervalCO2 INT Interval for the CO2 measurements in

seconds. This determines how fast the

measurement of the CO2 sensor must be

checked. This is standard 8 (seconds).

The same conditions apply as iIntervalCO.

iIntervalIllumination INT Interval for the illumination measurement in

seconds. This determines how fast the

measurement of the illumination sensor

must be checked. This is standard 13

(seconds).

The same conditions apply as iIntervalCO.

iIntervalRoomHumidity INT Interval for the humidity measurement in

seconds. This determines how fast the

measurement of the humidity sensor must

be checked. This is standard 11 (seconds).

The same conditions apply as iIntervalCO.

iIntervalRoomtemp INT Interval for the roomtemperature

measurement in seconds. This determines

how fast the measurement of the

roomtemperature sensor must be checked.

This is standard 3 (seconds).

The same conditions apply as iIntervalCO.

 Page 21 of 30

iIntervalVOC INT Interval for the VOC measurement in

seconds. This determines how fast the

measurement of the VOC sensor must be

checked. This is standard 5 (seconds)

The same conditions apply as iIntervalCO.

dwRgb DWORD The TP10 has a few RGB leds that can be

used to light up the TP10. This value

determines the intensity of each led.

Predefined colors can be used for this input:

RGB_BLACK , RGB_NAVY , RGB BLUE ,

RGB_GREEN , RGB_TEAL , RGB_LIME ,

RGB_AQUA , RGB_MAROON , RGB_PURPLE ,

RGB_OLIVE , RGB_GREY , RGB_ORANGE ,

RGB_FUCHSIA , RGB_YELLOW ,

RGB_WHITE

You may also create your own color. To do

this a DWORD has to be made. (eg.

16#1E8FE03F) In the example 1E is a

hexadecimal value for the intensity, 8F is

the red value, E0 is the green value and 3F

is the blue value.

iRGBIntensity INT if intensity > -1 then use this value

bEn BOOL Enable bit.

bLocate BOOL IF TRUE: makes the TP10 flash green 3

times to know which one you are currently

using.

bWallSurface BOOL Not relevant.

 Page 22 of 30

Outputs:

Name Type Description

qarr_bButtons ARRAY

[0..12] OF

BOOL

Every button of the TP10 can be read. This can

be done by reading the values from this array.

True means the button is operated, false

means the button is unoperated.

qarr_bButtons [1] = button 1, qarr_bButtons

[10] = button 10.

qfCO2 REAL Value of the CO2 sensor in PPM (parts per

million).

qfHumidity REAL Value of the humidity in percent.

qfLux REAL Value of the illumination sensor in lux.

qfRoomTemperature REAL Value of the temperature measurement in °C.

qfVOC REAL Value of the VOC sensor in PPB (parts per

billion)

qfDewpoint REAL calculated dewpoint value, dependant on

temperature and humidity measurements

 Page 23 of 30

Systeminfo:

Name Type Description

qbDeviceActive BOOL Boolean that indicates if the TP10 is active.

True = TP10 active

False = TP10 not active

qdtVersionHw DATE Date of the hardware version of the TP10.

qdtVersionSw DATE Date of the software version of the TP10.

qdtVersionReg DATE Date of the register version of the TP10.

qrVoltageLevelA REAL Voltage level of the A line in Volt.

qrVoltageLevelB REAL Voltage level of the B line in Volt.

qsUniqueId STRING Unique ID of the TP10

 Page 24 of 30

Sample program listing TP10

 Page 25 of 30

6. Inputs and outputs of the RC block
Description usage of the inputs and outputs of the RC

The RC block has a lot of inputs that can change the behaviour of the RC.

The table below shows a list of all the inputs, outputs and configuration variables the RC

has.

 Page 26 of 30

Inputs:

Name Type Description

bEn BOOL This boolean must be true of the

connected device is a Room Analyser.

If this boolean is true, all buttons are

disabled, except button 10. Button 10

still be used to make the Room

Analyser flash green. This can be used

to test the DIOC communication with

the PLC.

bEnableFan BOOL enable fan bit (relay pin 41-42)

bHeating_3P_plus BOOL Heating plus signal (output pin 7)

bHeating_3P_min BOOL Heating min signal (output pin 8)

bCooling_3P_plus BOOL Cooling plus signal (output pin 20)

bCooling_3P_min BOOL Cooling min signal (output pin 21)

bFireDamper_OPN BOOL open signal fire damper (output pin 33)

bFireDamper_CLS BOOL close signal fire damper (output pin 34)

bRelais_45 BOOL relay pin 45 (DO3)

bRelais_46 BOOL relay pin 46 (DO2)

bRelais_47 BOOL relay pin 47 (DO1)

iIntervalACVoltage UDINT retrieval time ac voltage (in seconds)

iIntervalTempHeatingWater UDINT retrieval time temperature heating

water (in seconds)

iIntervalTempICEWater UDINT retrieval time temperature ice water (in

seconds)

iInterval_FB_Pulsion UDINT retrieval time feedback pulsion (in

seconds)

iIntervalTempAirPulsion UDINT retrieval time temperature pulsion air

(in seconds)

iInterval_FB_Extraction UDINT retrieval time feedback extraction (in

seconds)

iIntervalTempAirExtraction UDINT retrieval time temperature extraction

(in seconds)

iIntervalDipswitches UDINT retrieval time dipswitches (in seconds)

iIntervalFBFiredamper UDINT retrieval time feedback firedamper (in

seconds)

iIntervalFanFaultStatus UDINT retrieval time fan fault (in seconds)

 Page 27 of 30

iSendIntervalSpHeating INT send interval time for the heating set

point in seconds*

iSendIntervalSpCooling INT send interval time for the cooling set

point in seconds

iSendIntervalSpPulsion INT send interval time for the pulsion set

point in seconds

iSendIntervalSpExtraction INT send interval time for the extraction set

point in seconds

iSendIntervalSpFan INT send interval time for the fan set point

in seconds

bForceSendSpHeating BOOL Set this to true to send the heating set

point immediatly

bForceSendSpCooling BOOL Set this to true to send the cooling set

point immediatly

bForceSendSpPulsion BOOL Set this to true to send the pulsion set

point immediatly

bForceSendSpExtraction BOOL Set this to true to send the extraction

set point immediatly

bForceSendSpFan BOOL Set this to true to send the fan set

point immediatly

iSpHeating INT heating setpoint in %

0% = 0V,

100% = 10V

iSpCooling INT cooling setpoint in %

0% = 0V,

100% = 10V

iSpPulsion INT pulsion setpoint in %

0% = 0V,

100% = 10V

iSpExtraction INT extraction setpoint in %

0% = 0V,

100% = 10V

iSpFan INT fan setpoint in %

0% = 0V,

100% = 10V

bReset BOOL if true: resets the Room Controller

arr_sConnectionComments ARRAY

[1..41] OF

STRING(8)

comments for every connection that is

visible on the visualisation

 Page 28 of 30

 Page 29 of 30

Outputs:

Name Type Description

qbFiredamperFB_OPN BOOL feedback firedamper open (input pin 37)

qbFiredamperFB_CLS BOOL feedback firedamper closed (input pin 36)

qbFanFault BOOL fan fault (input pin 43)

qarr_bDipSwitches ARRAY[1..12]

OF BOOL

status dipswitches

qfACVoltageLevel REAL measured ac voltage

qfTempHeatingWater REAL temperature heating water in °C (PT1000

pin 12-13)

qfTempIceWater REAL temperature ice water in °C (PT 1000 pin

25-26)

qfPulsionFB REAL pulsion vav feedback in % (pin 17)

0% = 0V,

100% = 10V

qfTempAirPulsion REAL temperature pulsion in °C (PT1000 pin 18-

19)

qfExtractionFB REAL extraction vav feedback in % (pin 30)

0% = 0V,

100% = 10V

qfTempAirExtraction REAL temperature extraction in °C (PT1000 pin

31-32)

 Page 30 of 30

Systeminfo:

Name Type Description

qbDeviceActive BOOL Boolean that indicates if the RC is active.

True = RC active

False = RC not active

qdtVersionHw DATE Date of the hardware version of the RC.

qdtVersionSw DATE Date of the software version of the RC.

qdtVersionReg DATE Date of the register version of the RC.

qrVoltageLevelA REAL Voltage level of the A line in Volt.

qrVoltageLevelB REAL Voltage level of the B line in Volt.

qsUniqueId STRING Unique ID of the RC

